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Stochastic Choice of Basis Functions in Adaptive 
Function Approximation and the Functional-Link Net 

Bons Igelnik and Yoh-Han Pao, Fezlow, ZEEE 

Abstract-A theoretical justification for the random vector 
version of the functional-link (RVFL) net is presented in this 
paper, based on a general approach to adaptive function approx- 
imation. The approach consists of formulating a limit-integral 
representation of the function to be approximated and subse- 
quently evaluating that integral with the Monte-Carlo method. 
%o main results are: 1) the RVFL is a universal approximator 
for continuous functions on hounded finite dimensional sets, and 
2) the RVFL is an ewient universal approximator with the rate 
of approximation error convergence to zero of order O(C/&i), 
where n is number of basis functions and with C independent of 
n. Similar results are also obtained for neural nets with hidden 
nodes implemented as products of univariate functions or radial 
basis functions. Some possible ways of enhancing the accuracy of 
multivariate function approximations are discussed. 

I. INTRODUCTION 

HE primary purpose of this paper is to give a theoretical T justification for the functional-link net which was pro- 
posed by one of the authors [l] and which has been shown 
to be capable of excellent performance in various areas of 
applications [2]-[4]. 

In the process of writing the paper, however, we concluded 
that a method developed for that purpose can be applied not 
only in network-based neurocomputing but can also serve as 
a more general method for adaptive function approximation. 
We address both issues in this paper. 

The essence of the method is in the use of a limit-integral 
representation of the function to be approximated and subse- 
quent evaluation of the integral by the Monte-Carlo approach 
[5],  [6]. The integration is made over the space of the param- 
eters which specify basis functions in the approximation of 
the function. 

Let f E C ( I d )  be a continuous function, defined on the 
standard hypercube Id  = [O; lId c Rd, and consider a limit- 
integral representation of the function f 

where L and X are low-dimensional (one or two) and mul- 
tidimensional parameters, respectively, G is an activation 
function, .T is an operator, defined on C(Id) ,  a is a finite or 
infinite real number, and V is the domain of the parameter A. 
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We attain an approximation of the function f with use 
of two stages of approximation. The first stage consists of 
approximating the limiting value of the integral by the integral 

where 1 M a. The second stage consists of obtaining an 
estimate of the multiple integral with use of the Monte-Carlo 
method 

where A = (XI, . . . , An) is a sample of size n drawn from the 
uniform distribution on V, that is, a set of n random variables, 
independent and uniformly distributed on V. Information 
about the function is incorporated in the coefficients ak = 
(IVl/n)T[f(Ak)], IC = 1 , . . -  , n, available in the “learning” 
phase of function approximation task and so we arrive at a 
representation 

Gxk,l can be regarded as basis functions in this repre- 
sentation. They are parameterized by random variables Xk. 

which are not to be learned, and a deterministic (but low- 
dimensional!) variable 1. Thus the learning in this approach 
is a linear one and, therefore, simple and fast. This is one 
evident advantage of the approach. In practice we use the 
conjugate gradient method of optimization [7] for learning. 
The second advantage of this stochastic approach is that 
the error of the Monte-Carlo approximation tends to zero as 
n + ca in the manner of C/fi, where C is independent of 
n (but, generally speaking, not of d) and is determined by the 
variance of the integrand. Thus the Monte-Carlo approach is 
an efficient one in the approximation of multiple integrals. The 
question about efficiency of the overall approximation is more 
complex and subtle. Indeed the overall error of approximation 
can be bounded by sum of the error of approximating the 
limiting value of the integral by the integral and the error 
of approximating the integral by the finite sum using the 
Monte-Carlo method. Both errors depend on 1 (the error of 
the Monte-Carlo method through C). C may depend on I in 
such a way that it tends to infinity when 1 + a. Nevertheless 
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in some cases, including that of our paper, C can be bounded 
and the overall error of approximation is of the order of 1 /,/E. 

To fix ideas, we cite, as illustration, the Poisson represen- 
tation [8] of a continuous function, defined on the interval 
[-T, 7r], namely 

Following our procedure, this limit-integral representation 
would lead to the following adaptive approximation 

where the random parameters U k  are drawn from [-T, 7r] and 
1 is the one additional parameter to be adapted for minimal 
error of approximation. 

In this paper we consider a special case of this general 
method, the random vector version of the functional-link 
(RVFL) net. For every f E C ( I d )  we define an RVFL net 
as an one hidden layer feedforward neural net of the form 

where U k ,  b k  E R, W k  E Rd, x E I d .  RVFL has the same 
form as the general nonlinear perceptron (GNP), except that 
in the RVFL the parameters W k ,  b k  of the hidden layer are 
selected randomly and independently in advance and parame- 
ters a k  of the output layer are learned using simple quadratic 
optimization, while in the GNP all parameters U k ,  W k ,  b k  

need to be learned using complex nonquadratic optimization. 
Recently the universal approximation capability of the GNP 
was proved for very general choice of activation function g 
[9]-[141. There exists a number of papers as well [15]-[20], 
where the efficiency of the approximation by the GNP was 
investigated. In particular Barron [16] has proved that the 
approximation error for the GNP tends to zero with the rate 
not worse than that of the order O( l/fi) (The approximation 
error is defined as a distance between a function to be 
approximated and the best approximation in a given class 
of approximations). At the same time Barron [16] showed 
that in case of GNP with fixed basis functions (that is with 
W k ,  b k  defined deterministically in advance) there is no chance 
of avoiding exponential growth, in d, the number of basis 
functions. We also came to the same conclusion in our earlier 
discussions of the functional-link net [21]. The RVFL turns out 
to be a practical compromise between the full GNP and those 
G W s  with fixed basis functions, combining both simplicity 
of learning and efficiency of representation since, as we show, 
the rate of error convergence for the RVFL is of the same 
order as for the GNP. 

An intuitive argument explaining the universal approxima- 
tion capability of the RVFL can be given in the form of the 
following proposition. 

Proposition-RVFL Networks Are Universal Approximators: 
Suppose a continuous function f is to be approximated on 
the bounded set in Rd. There exists a single hidden layer 
feedforward net NI with certain weights which approximate 
f within ~ / 2  [9]-[ 111. A partly random selection of weights 
will eventually produce an RVFL net N 2 ,  the effect of whose 
weights are very close to those of N I ,  close enough so that 
Nz approximates N 1  within ~ / 2 .  Then N 2  approximates f 
within E .  

Recently we showed that combined use of an ensemble of 
RVFL networks can result in the minimization of generaliza- 
tion error. We give here a brief discussion of that matter. 

Explanation: In the RVFL the generalization error 
E , , N ( ~ )  is a function of a parameter vector B = ( w 1 ,  

... , w,, b l , . . .  , b,).  Suppose the function E n , N ( 6 )  is 
defined on the bounded set 8 and 6,  = ( e l , . . .  , 6 2 , )  = 
arg minee0 E,, , (e).  Using the Pincus formula for estimating 
the point of minimum of a continuous function [28], we have 

6 . - lim , j =  1, . - .  , 2n. 
*' - A+oo 

exp [ - A E , , N ( ~ ) ]  d6 

Approximating in the right-hand side of this equation the limit 
(using finite but large enough A) and the integrals (using the 
Monte-Carlo method), we obtain 

K 

C ~ k j  ~ X P  [-~~,,iv(ek)I 

, 2n e,, k = l  , j = 1, ... 
K 

exp [-A&, N ( e k ) ]  
k = l  

where 6 k  = ( & I , - . .  , 6 k , 2 , ) ,  k = l , . . .  , K is a sample 
of parameter 6 from the uniform distribution in 0. From this 
approximation the following construction stems. Generate K 
RVFL nets, and find an estimate of the best parameter 6 by the 
last formula. Determine parameters a , ~ ,  . . . , a,, by training 
using fast quadratic optimization. The net with the parameter 
values w , 1 ,  e - -  , w,,, b e l ,  , a,, should be 
close to the optimal one. The training procedure consists of 
(K + 1) quadratic optimization steps. 

Thus it is possible to generate K RVFL nets and determine 
an estimate of the optimal parameter 6 using the approxi- 
mate Pincus construction and the fast quadratic optimization 
characteristic of the RVFL. 

This explains why the RVFL construct is a powerful one 
and easy to understand intuitively. 

As a digression but also to provide additional insight, we 
ask and answer the following question, namely, how does it 
happen that the same order of accuracy of approximation can 
be achieved by both the full GNP and its simplified (in terms 
of number of learning parameters) version, the RVFL? 

We get an answer by looking over two corresponding 
proofs, one by Barron and another by ourselves. In the case 
of GNP, to get a bound for the approximation error Barron 
[16] approximates some integral J 2'[f(A)]G~(x) dA, using 
the Monte-Carlo method implicitly, but in a way different 

, b,,, a , l ,  
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from ours. He transforms T [ f ( X ) ] G ( X ) d X  to a new form 
T[f(X)]C(X) dX so that T[f(X)] dX can be represented as a 
probability measure p(dX).  Then the integral is approximated 
as follows 

- 

where are drawn randomly from the domain V ,  supplied by 
the measure p(dX).  Therefore all information about a function 
to be approximated is included in the mechanism of random 
selection (which is not convenient in practice), and there are 
no coefficients in the linear combination of the basis functions 
to be learned. In case of the RVFL we use a simple mechanism 
for random selection of the parameters (uniform distribution) 
and include all information about unknown function in the 
parameters to be learned. 

To show clearly the difference between these two ap- 
proaches, consider briefly the basic ideas of the Monte-Carlo 
method for multiple integral evaluation. Suppose that our task 
is the evaluation of the multiple integral J = J l d  F ( x )  d x  and 
that the task cannot be fulfilled in the explicit form because of 
the complex analytic nature of the function F. The simple 
Monte-Carlo method is based on the fact that the integral 
J can be also represented as an expectation of the random 
variable F ( t ) ,  where 5 is the random variable uniformly 
distributed in I d .  The evaluation of the integral, therefore, 
can be done by generating a sample ([I, . , &) from this 
uniform distribution and taking the estimate of the integral in 
the form 

The right-hand side of this equation is a random variable with 
the expected value equal J. The error of the Monte-Carlo 
approximatioh can be evaluated as 

where var F(c )  is a variance of the random variable F ( ( )  and 
IC is a constant which depends on the confidence level. The 
essence of the method is that the error of approximation does 
not depend on the dimension d of the integration space in 
terms of the size n of the sample and may depend on d only 
through the variance var F(c) .  In more complicated versions 
of the Monte-Carlo method (known as variance reduction 
methods [5], [6]), the integrand is transformed so to decrease 
the variance. One of the general variance reduction methods 
is the method of importance sampling. In that method we use 
a function p which satisfies the conditions 

Then we have 

J =, ld F ( x )  d x  

where expectation Ell of the random variable F(c)/p(c), 
is taken with respect to the probability measure p ( d z )  = 
p ( x ) d x .  Thus the evaluation of the integral in this case can 
be made as follows 

F(cl)/p(cl) + * .  F(cn)/p(cn) JRZ 
n 

where (cl,. , e,) is a sample from the nonuniform dis- 
tribution of random variable c having density function p. 
Therefore generating the sample (cl, . . . , e,) is not as simple 
as in the case of simple Monte-Carlo method. Moreover to 
get a real variance reduction we need to include in p some 
information about the unknown integral. Indeed the variance 
var[F(c)/p(c)] can be evaluated as 

~ ( x )  2 o for x E I ~ ,  then taking p(x) = F ( z ) / J  we evi- 
dently obtain var [F(c)/p(c)] = 0. The error of approximation 
is reduced to zero but we need to know not only the integral J 
but even F! The conclusion is that to reduce the approximation 
error, we would need to increase the complexity of the sample 
generating, which equivalent to increasing information about 
the unknown quantities. 

Returning to the previous discussion we can say that our 
approach and Barron’s approach differ in that we use these two 
extreme version of the Monte-Carlo method (simple Monte- 
Carlo and maximum variance reduction). 

The results obtained in the paper are given in the form of 
three theorems. In Theorem 1 we prove that the RVFL is a 
universal approximator of continuous functions. In Theorem 2 
we prove that radial basis functions with random parameters 
also can serve as a universal approximators for the same class 
of functions. In Theorem 3 we prove that the approximation 
error for RVFL tends to zero with the rate O(C/fi) for 
a given class of functions to be approximated, that is this 
kind of neural networks is efficient for multivariate function 
approximation. 

The organization of the paper is as follows. We state our 
results in Section II and give a sketch of the proof in Section 
III. Section IV is devoted to citing some examples of use of 
the RVFL. Conclusions and recommendations are contained in 
Section V. We give proofs of the theorems in the Appendix. 

Briefly, results of the paper give theoretical justification for 
the RVFL and open ways both for enhancing efficiency of 
the RVFL and for the investigation of other perspective adap- 
tive approximations using stochastic approaches. Qualitative 
discussion of the present results have been reported at the 
conferences and published in papers [22] and [23]. 
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n. MAIN &SULTS 

We consider a continuous function f E C ( I d )  and an RVFL, 
which we denote as 

n 

f w , ( x )  = a k g ( w k  . 2 + bk)  (2) 
k = l  

where w, = (n, a 1 , e . a  , a,, b 1 , a . a  , b,, w ~ , . . .  , w,) is an 
overall parameter of the net Wk z is an inner product of 
the vectors Wk, x. The random part of w, is denoted as 
A, = ( ~ 1 , s . -  , w,, b l , . . .  , b,).  Suppose that A, is defined 
on the probabilistic space &(a, a) with probability measure 
~ , , n , ~  and E is a symbol of expectation with respect to 
&(a, a). We assume that &(a, a) and p , , ~ ~  depend on 
a deterministic parameter (a, a) which should be determined 
in the learning stage. The distance between f and f w ,  on any 
compact set K, K C Id  can be defined as 

Then our first result is the following. 

absolutely integrable activation function g such, that 
Theorem I :  For any compact K, K c I d ,  K # I d  and any 

s, g 2 ( 4  dx < - (4) 

there exist a sequence of RVFL {fun} and a sequence of 
probability measures {p,, a, such that 

(5 )  

The probability measures p,, 0, a can be specified as follows. 

be independent and uniformly distributed in V d  = [O;a] x 
. . . x [-a; RI, Id  and [-2R; 2a], respectively, 200 = a60, 
bo = -wO.yo-uo. Then ( ~ 1 , " .  , 20,) and ( b l , . . .  , b,) are 
two samples from the distributions of WO and bo, respectively. 

Thus Theorem 1 states that RVFL is a universal approxi- 
mator for any continuous function on any compact set which 
is inside I d .  The distribution of the random parameter A, is 
simple in generating. Examples of activation functions, which 
satisfy conditions of the theorem, are Gaussian, subsequent 
derivatives of Gaussian, any integrable with square functions 
with finite support. To include as an activation function 
sigmoidal functions (with some, not important in practice, 
restrictions) we prove a corollary. 

Corollary I: For any compact K, K C I d ,  K # I d  and 
any differentiable activation function g, such that 

k t  6 0  = ( 6 0 1 , . * '  7 God) ,  YO = ( Y O l , * ' .  7 god)  and '110 

there exist a sequence of RVFL { f w , }  and a sequence of 
probability measures {p,, 0, a} such that 

The probability measures p,, 0, a are determined in Theorem 
1. 

__ 
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Thus any activation function considered in the practice of 
neural net computing can be used in RVFL as well. 

It is interesting to note that in the process of proving 
Theorem 1 we obtained as an intermediate result, that adaptive 
universal approximation for continuous function can be also 
taken in the form 

d 

(7) 
k = l  i=l 

where 2 = ( x 1 , - - - ,  a), Wk = ( W k l , ' . .  , wkd), bk = ( b ~ ,  
, bkd). We state the result in Corollary 2. If fwn(x) is 

defined by the formula (7), f u n )  is defined by the 
formula (3), then 

The probability measures p,, Q can be specified as follows. Let 
CO, yo are determined in Theorem 1,200 = CO,  bo = -wooyo, 
wo o yo = (woly01, e , WOdYOd) is an outer product of two 
vectors W O  = (wol, . . .  , W O ~ ) ,  bo = (bo l l . . .  , bod) .  Then 
(wI,... , w,) and ( b 1 , a - a  , b,) are two samples from the 
distributions of WO and bo, respectively. 

Under random choice of parameters Wk, bk we do not see an 
advantage of representation of the basis function in the form 

(at least we cannot prove it). 
We proved as well the universal approximation capability 

for adaptive approximation using radial basis functions with 
random parameters. The corresponding result is stated in the 
following theorem. 

Theorem 2: Let an adaptive approximation be taken in the 
form 

g(Cf=l Wki2;) compared with the form ni=, d g ( w k i z i  + b k i )  

k=l  

where w, = (n, al, , a,, y, , y,, 201, , w,) is the 
overall parameter of approximation, the distance between f 
and f w ,  is defined by (3), and the distribution of random 
parameters w k ,  Yk is defined in Corollary 2, except that now 
bo = -WO . yo. Then for any compact K, K c I d ,  K # Id  
and any absolutely integrable activation function g satisfying 
(4) or any differentiable activation function g, satisfying (6), 
and additionally the condition 

we have 

We need condition (8b) to normalize g by equation 

Now we state our result concerning the efficiency of the 
RVFL. First of all we introduce some restrictions on a contin- 
uous function f to be approximated. We suppose that this 
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function satisfies the Lipshitz condition [24], that is, there 
exists a constant K > 0 such, that for any z, y E I d  

If(z) - f(Y)l I K I b  - YII (9) 
d where 11. - yIJ = Jza - yil. Thus we narrow the class 

of continuous functions to the class of smoother functions 
satisfying (9). Second, we apply some tuning of the activation 
function 9, namely we suppose that support of the function g 
is in U:=, [-pwi; pwi] and denote it as gp. Then we have 
Theorem 3. 

Theorem 3: For any f E C ( I d ) ,  satisfying (9), any compact 
K ,  K c I d ,  K # I d ,  any activation function gp, satisfying 
conditions (4) or (6), there exist a sequence of RVFL {fun}, 
a sequence of probability measures {pn, 0, and a constant 
Cf,g,Q,o,B,d such, that 

Probability measures pn, Q ,  a are defined by Theorem 1. 
In the last theorem, we prove that RVFL is not only an 

universal but an efficient universal approximator. Indeed the 
constant Cf, g ,  0, p, d does not depend on n and the approxi- 
mation error is of the order of O(C/,h) ,  while approximation 
by linear combination of fixed basis functions in the given 
smoothness class of the functions to be approximated gives an 
approximation error on the order of 0(l/n1ld) [25]. 

In. SKETCH OF THE PROOFS 

We discuss our basic ideas and then present an outline of our 
proofs. The proofs of corollaries from Theorem 1 are presented 
in this section because of their simplicity. 

We now consider a sketch of the proof of Theorem 1. 
We represent a function to be approximated as the limiting 
value of a multidimensional integral over parameter space. The 
integrand of the integral is constructed so that it represents a 
window transformation of the function in a neighborhood of 
a given point X. The window transformation is made by a 
function 

d 

h z ( ~ 7  w) = wig[wi(zi - ~ i ) ]  
i=l 

where vectors z = ( ~ 1 , . - -  , X d ) ,  w = (wl , . . .  W d )  deter- 
mine, respectively, the location and the shape of the window. 
Without loss of generality we can assume that g satisfies the 
condition 

g(z )  dz = 1. 

This condition can be dropped in the final stage of this proof. 
Then the function h,(y, w) satisfies the equation 

for any X, w E Rd. The function h,(y, w) approaches the 
multidimensional delta function &(y) as w1, . - , W d  -+ 00. 

Since S,(y) satisfy the equations 

&(Y) =o, if Y # E  Ld U Y )  dY = 1 

we come to the limit-integral representation 

f(z) = lim lim f(y)h,(y, w)dy. (11) 

Considering F(w) = j l d  f(y)h,(y, w) dy as a function of w 
and applying the l'Hospital rule [24] to this function, we obtain 
the limit-integral representation of the function f in the form 

W1+00 W d * m  ] I d  

1 
f(z) = lim lim 

01-00 R d * m  l d x f i d  n Ri 
i=l 

. f(Y)hz(Y, w) dY dw (12) 

where ad = [O; R1] x ... x [O; Rd]. Henceforth we consider 

The second step is replacing the function h,(y, w) by the 
function g[w . z + b(y)], where g is an activation function 
satisfying the conditions of Theorem 1. We do it in the 
two-stage procedure. First replace, temporarily, the general 
activation function g by the special one, sinn, which coincides 
with sine-function on the interval [-2R; 2R] and equals zero 
outside this interval. Then applying the identity relationship 
sin0 usinn b = [cos0 ( a  - b)  - cos0 (U + b)] /2 ,  repeatedly, 
(d - 1) times, we transform the integral in (12) to the form 

= e . .  = o d  = Q. 

. [w1(z1 - y1) f w2(z2 - 312) f wd(zd - Yd)] dydw 

where summation is made over all combinations of + and -. 
Replacing all variables - wi by wi we come to the formula 

d 

. f(y) COSQ [w. (3 - Y)] JJ wi dy dw (13) 
i=l 

where V d  = [O;R] x [-R;RId-'. 
The second stage in this step is replacing cos62 by the general 

activation function g in (1 3). Using (1 1) we can represent  COS^ 
on any compact K c [-2R; 2R] uniformly by formula 

r20 
COSQ ( z )  = lim COSQ (u )g [a (z  - .)]a du. (14) 

Substituting (14) in (13) we obtain 
d.20 P 
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If we denote 

and 

dw =dydwdu, 
W d  = [-2R; 2R] x Id  x Vd, 

b = -(aw. y +  U )  

d 

a u w i  

then formula (15) can be rewritten in the form 
r 

Formula (16) gives us the basis limit-integral representation 
of the function f. 
Our next step in proving Theorem 1 is to approximate the 

integral on the right side of (16) by the Monte-Carlo method. 
k t  ( ~ 1 , * * *  7 un), ( Y I , * * *  7 yn), ( w , . * *  7 wn) be indepen- 
dent samples of size n, drawn from the uniform distributions 
in [-2R; 2R], I d ,  V d ,  respectively, and ( ~ 1 , .  * , wn) the 
corresponding sample drawn from W d .  Then we have 

k=l 
This notation means that 

according to the theory of the Monte-Carlo method. If we 
denote ak = (4Rd/n) Fa”, sai (Wk) ,  IC = 1 , .  . , n and consider 
random variable aw as a random variable w drawn from 
V,” = [O;aR] x [-aR;aRId-’, then we can rewrite (17) in 
the form IWd Fa, n(w)g(aw * X + b)  dw 

n c akg(wki ‘ z + b k ) .  (18) 

Combining (16) and (18), we complete the proof of Theorem 1. 
Proofof CoroZlury I: It is sufficient to note that., under 

conditions of Corollary 1, g’ satisfies the conditions of The- 
orem 1 and therefore 

k = l  

2 0  
 COS^ (2) = lim  COS^ (u)g’[a(z - .)]a du. (19) L2n 

Integrating (19) by parts, we obtain 
cos0 ( z )  = lim cosn(u)g[a(z - ~ ) ] l ; = , ~  2 0  

a+m 

Since R can be chosen so that  COS^ ~1;::~ = 0, we obtain 
r2n 

 COS^ (2) = - lim sin0 (u)g[a(z - U)] du. (20) 
I-2n 

Substituting (20) in (13) and repeating the previous argument, 
we receive the formula 

n 

completing the proof. 
Proof of CoroZlury 2: It is sufficient to apply the Monte- 

Carlo method to the evaluation of the integral in (12). Then 
we obtain 

- n  d 

Denoting 

i=l 
d ak = 

i=l 

come to the representation 

i=l 
n 

k=l i=l 

that, combined with (12), completes the proof. 
The proof of Theorem 2 does not contain any new ideas 

compared with Theorem 1, but rather underlines the general 
principle: making limit-integral representation of the function 
to be approximated, we need to construct the kemel of the 
integrand in such a way that it concentrates a function to 
be approximated at the points or surfaces of its domain. 
For example, the kemel h,(y, w) = n , = ,  wig[wi(x; - yi)] 
concentrates the function f at the points 2, while the kemel 
iLz(y, w) = g(w x + b )  concentrates the function at the 
hyperplanes (“ridges”) w .X + b = const. In Theorem 2 we 
use the kemel Kx(y, w) = g[w (X - y) o (x - y)] which 
concentrates the function again at the points X, but in a way 
different from that of hz(y, w) does. The comparison of these 
different kernels remains an open, interesting problem. 

Now we proceed to the basic ideas of Theorem 3. First we 
note that p ~ ( f ,  fun) can be bounded by 

d 

P K U ,  fw , )  I SUP If(.) -fa,n(X)l +PK(fa,n,  fun) (23) 
,€I* 
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TABLE I 
COMPARISON OF LEARNING EFFICIENCIES OF THE FUNCTIONAL-LINK (RVFL) AND BACKPROPAGATION @P) WTHODS 

* Ended because of failure to achieve comparable accuracy 

where 

fa,n(x) = 1 Fa,n(w)g(aw x + b)  b. (24) 

The first term can be made arbitrarily small by choosing big 
enough values of the parameters a, Q. But in this case, the 
variance 

W d  

f 

* [IWdlFa,Q(W)9(@W. 2 + b)I2 - f2b) 
tends to infinity with a, R -+ 00. If we can guarantee that the 
rate of convergence SUP,Eld I f ( % )  - fa,fi(x)l to zero is less 
than the rate of convergence var, ,~ to infinity, then we can 
obtain an estimate 

But in this case the restrictions imposed on the function f 
would be too severe. Instead of this, we restrict support of the 
activation function g to the interval with length P(n)R, where - 0. Then we can keep a , R  and, therefore, var,,~ 
bounded, to obtain an estimate 
P(n)  n-oo 

with C independent of n, that completes the proof. 

Iv. EXPLANATION OF THE USE IN APPLICATIONS 

The RVFL method has been used in several tasks by the 
present authors and their research collaborators and by other 
researchers, all with favorable results. 

As an example, in principle the thickness of film cre- 
ated by molecular beam epitaxy can be monitored through 
optical ellipsometry. Given the (complex) refractive index 
of the substrate and the film thickness, it is possible to 
calculate the values of the ellipsometry measurements. But 
even when given the requisite ellipsometry measurements, it 
is very difficult to obtain accurate estimation of the (complex) 
refractive index of the deposited film and of the film thickness. 
The traditional methods of numerical solution of systems 
of nonlinear equations, such as different versions of the 
Newton method or secant methods [26], failed because of their 
localized nature. This task of inversion of a complex functional 

relationship ($0, Ao, $1, AI)  -+ (n, I C ,  do, d l )  was carried 
out using a system of RVFL nets with good results. In this 
task the input variables are two pairs of $ and A angular 
measurements and there are four outputs, n and IC (real and 
imaginary parts of the refractive index, respectively) of the 
film, and two film thicknesses do and d l .  Each of the nets 
were trained with lo4 training patterns (constituting a very 
sparse set of training patterns in four-dimensional (4-D) space) 
and excellent generalization was achieved. Particularly the 
refractive index n was evaluated with the error less than 0.1%. 

Training for lo4 training set patterns with a consultation 
system error of less than could usually be achieved in 
about six hours on a SPARC 2 workstation, whereas training 
was never satisfactorily achieved with backpropagation [27]. 
The number of basis functions varied in the range 50-200. 

Our experience with the use of the RVFL approach in deal- 
ing with a number of other tasks confirms our judgment that 
this approach is indeed of high efficiency and of reasonable 
accuracy. Some features of those tasks and our experiences 
with those learning tasks are summarized in Table I. 

V. CONCLUSIONS AND RECOMMENDATIONS 

We have presented a theoretical justification for the random 
vector version of the functional-link net; this is presented as 
a particular case of a more general stochastic approach for 
adaptive function approximation. We proved that RVFL is an 
universal approximator and that the rate of convergence to 
zero of the approximation error is of the order of O(C/fi) 
with C independent of n. Similar results were also proved for 
networks with functional units in the form n,=, g[mk;(xi - 
yki)] or g[wk (x - yk) o (x - gk)] with random parameters 
Yk, w k .  Thus we demonstrated that a stochastic approach 
based on an limit-integral representation of the function to 
be approximated with subsequent evaluation of the integral by 
the Monte-Carlo method leads to efficient approximation of 
multivariate functions. 

We used a simple Monte Carlo because, in the general case, 
we did not want to require any specific information about 
the function. Of course the availability of such information 
would allow us to use variance reduction methods. This topic 
supposed to be the subject of future investigations. 

The use of Monte Carlo in neural computing or other 
adaptive (and nonlinear) function approximation opens new 
possibilities compared with traditional Monte Carlo for multi- 

d 
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ple integral calculation. Consider a simple example. Suppose, 
in evaluating a multiple integral, we try to decrease the 
variance, making two independent samples each of size n, and 
then estimate the integral as an average of the estimates made 
over each sample. Clearly the effect of variance reduction 
is the same as that achieved by using one sample of size 
2n. Suppose now that we evaluate the function with the 
RVFL in the same manner, with the final estimate taken as 
an average of two estimates, with ii basis functions in each 
case, where ii is the optimal value of the number of basis 
functions for a given number of training pattems N .  This 
optimal value, which minimizes the total statistical risk, exists, 
as was shown by Barron [17] for a definite class of functions 
to be approximated. Existence of such an optimal value of n 
is a well-known fact for practitioners, including the authors of 
this paper. Therefore, it is impossible to decrease the variance 
by simply increasing ii, but it is possible to do so by taking the 
average of two independent estimates with ii basis functions 
each. Why? Because we use two stages of learning instead 
of one. 

AF’PENDIX 

Proof of Theorem 1: We divide the proof in several steps. 
Step I: Representation (1 1) is true uniformly on any com- 

pact K c I d ,  K # I d .  
Proof: For any 6 > 0 and any compact K c I d ,  K # Id  

can be found a hypercube If = [6; 1 - 6Id such that K c If c 
I d ,  If # I ~ .  Using properties of h,(y, w) from Section III, 
we obtain 

r 

Replacing variable y by z = w o (x - y) and denoting 

we go on the evaluation of the integrals. We have 

S(w) = [-&; ,/iijJ x . . - x [-@; 
I f ( w )  for sufficiently large w. Therefore 

is contained in 

where M = sup f(x). 
x € I d  

Both last terms tend to zero when w tends to infinity (we 
assume that w + 00 amounts for w1 -+ 00, ... , Wd + 001, 
the first term because of continuity of the function f in Id  and 
the second one because of integrability of 191. We complete 
the proof, noting that 

and collecting all estimates of the integrals together. 

pact K c I d ,  K # I d .  
Step 2: Representation (12) is true uniformly on any com- 

Proofi Applying L’Hospital rule d times we obtain 

- - ... = lim . . . lim f(y)h,(y, 0) dy = f(x) 
R1+CC o d + m , / I d  

d where we temporarily denote h , , d ( Y ,  w) = n i = ,  wig[wi(xi- 

Step 3: Representation (16) is true uniformly on any com- 

Step 4: The following estimate of the error of the Monte- 

%)]I dw(d) = nf=1 dwi. 

pact K c I d ,  K # I d .  Proof is given in Section III. 

Carlo approximation holds 

uniformly on x E K. 
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Pro08 Denoting the left side of (25) as &Zc and using 
Fubini’s theorem, we obtain 
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= A  1 dx.[J,. F,,o(w)g(aw.x+b)dw 
n K  

Therefore 

that completes the proof. 

of Theorem 1. 

(x - y) o (x - y)] l-~:=~ 6, normalized so that 

Step 5: Combining (16) and (25), we complete the proof 

Proof of Theorem 2: Using the kernel hz(y, w) = g[w 

instead of the kernel hz(y, w) and repeating the argument 
of Step 1 and Step 2 of the previous proof, we obtain the 
limit-integral representation 

Estimating the integral in (27) with the Monte-Carlo method, 
as we did in Step 4, and collecting both estimate of approx- 
imation 

i=l 

and the estimate of approximation 

i=l 
d 

k = l  

we complete the proof. 

Proof of Theorem 3: The proof of the theorem is based 

Lemma: Let gp be an activation function with support on 
, Wd are any positive 

on the simple lemma. 

niZl [-pwi;pwi], where B, wl, 
numbers, h,,p(y, w) is defined by the formula 

d 

Then uniformly on any compact K c Id ,  K # Id 

Proof: Indeed we have 

dz 

where suppgp is support of gp. 
n u s  we can approximate f(x) by !Id f(y)h,,p(y, w) 

with bounded w, and, therefore, approximate f(x) by 
Jwd F,,n(w)g(aw . z + b) dw with bounded CY and R. Then 
from (26) we obtain that Cf,g,n,a,d is bounded, Completing 
the proof. 
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